TEOREMA DENSITAS PADA HIMPUNAN SEMUA BILANGAN SAMAR

Erik Maurten Firdaus, M. Adib Jauhari Dwi Putra, Findasari Findasari

Abstract


A fuzzy number is a fuzzy set with some special properties. In this paper, we defined some orderings on the set of all fuzzy numbers. We proved the Density Theorem on the set of all fuzzy numbers with an  ordering < . We showed that between any two fuzzy numbers, there exists a trapezoidal fuzzy number.

Full Text:

PDF

References


Basar, F. (2022). Summability Theory And Its Applications (Second). CRC Press. https://doi.org/10.1201/9781003294153

Benoumhani, M., & Jaballah, A. (2017). Finite fuzzy topological spaces. Fuzzy Sets and Systems, 321, 101–114. https://doi.org/10.1016/j.fss.2016.11.003

Elamir, E. E., El Sayed, M., Al Qarni, A. N., & El Safty, M. A. (2023). Decision-making to limit epidemics spread based on fuzzy-soft and topological spaces. Alexandria Engineering Journal, 74, 725–735. https://doi.org/10.1016/j.aej.2023.05.045

Fernández-Sánchez, J., & Úbeda-Flores, M. (2023). Quasilineability and topological properties of the set of fuzzy numbers. Fuzzy Sets and Systems, 465, 108562. https://doi.org/10.1016/j.fss.2023.108562

Kacprzak, D. (2017). Theory and Applications of Ordered Fuzzy Numbers. In Studies in Fuzziness and Soft Computing (Vol. 356). https://doi.org/10.1007/978-3-319-59614-3_9

Rojas-Medar, M. A., Jiménez-Gamero, M. D., Chalco-Cano, Y., & Viera-Brandão, A. J. (2005). Fuzzy quasilinear spaces and applications. Fuzzy Sets and Systems, 152(2), 173–190. https://doi.org/10.1016/j.fss.2004.09.011

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353. https://doi.org/10.1061/9780784413616.194


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.